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Leadership

 Leadership is not about driving the train but about laying down
the tracks
e Examples:
— TRIUMF initial funding and organization
— TRIUMEF as an international laboratory
— KAON

— TRIUMF as a multidisciplinary laboratory
— TRIUMF and Technology transfer office
— TRIUMF and Universities: expanding the consortium

— Community reach :
e Science world
e BC science council
* Vancouver institute
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Leadership is not about driving the train
but about laying down the tracks
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Particle physics at TRIUMF

The early years
The KAON vyears
The Higgs years

The BSM years
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The early years ( 1975-85)

* Meson factory years

* From the beginning, weak interaction studies
were part of the TRIUMF research program.

e U.Vic pienu branching ratio and rare Mu to E
conversion

e U de Montreal rare pion/muon decays
 Berkeley muon decay precision measurements
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Meson Factories

* LAMPF
— MEGA (u-> ey)
e SIN/PSI

— u-> ey, u-> e+e+e-, SINDRUM
— -MEG

* TRIUMF

— u->eyy, t—>ev, uN—>eN
e KEK/PS
* INR(Troisk)
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The Zurich meeting (1977)

Steven Weinberg

Harvard University, Massachusetts

Cambridge,

Abstract

A review is presented of the general
principles and recent developments in uni-
fied gauge theories of the weak, electro-
magnetic, and strong interactions.

Muon nonconservation is also possible in
the standard model, if there is more than
one scalar doublet. The coupling of Higgs
bosons to any particle are generally pro-
portional to the mass of that particle, so
one-loop diagrams in which Higgs bosons are
emitted and reabsorbed from lepton lines
give very small contributions. The dominant
effect comes from two-loop diagrams, in
which a Higgs boson is emitted from a lepton
and absorbed by a virtual W or Z. The
branching ratio here depends on many unknown
parameters, but under the most favorable
circumstances it could take values"“!) as
large as (a/w)* ~n 10—9,

Very recently, a new upper limit“?} of
3.6 x 10—°? has been set on the p - ey
branching ratio. From the perspective of
S5U(2) x U(l) gauge theories, this is almost
but not guite stringent enough to shed light
on the question of whether muon conservation
is really a fundamental symmetry principle.
An improvement of one more order of

42)

magnitude in the sensitivity of this ex- 43)
periment (and experiments on u?2 > e2) would

be very illuminating.

44)

P. Depommier et al., (Montréal-uBC-
Triumf collaboration) to be published.
Also see the report of H. P. Povel
(ETH-Zlrich-SIN—-Munich collaboration)

at this conference.[See also the edit.
postscript after L.Wolfenstein's report,
M. Kobayashi and K. Maskawa, Prog.
Theor. Phys. 49, (1973) 652: A. Pais
and J. Primack, Phys. Rev. D8, (1973)
3063; L. Maiani, Phys. Lett. 688,
(1976) 183: S. Pakvasa and H. Sugawara,
Phys. Rev. D14, (1976) 305.

(1973) 1226
143; s.
37, (1976)

Rev. D8,
(1973)
Lett.

T. D. Lee,
and Phys.
Weinberg,
657.

Phys.
Rep. 9C,
Phys. Rev.



The Zurich meeting

WEAK INTERACTIONS - Workshcop P

L. Wolfenstein

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, USA

Abstract

The study of the weak interactions involving Editorial postscript:
pions, muons, and nuclei can clarify the laws of
weak interactions. The present theoretical inter- As this contribution was prepared
est in muon-electron universality, nonconservation ‘before the conference it does not contain
of muon number, and second-class currents is dis- the latest experimental results on muon
cuased. number violating processes. With the

permission of the authors we are quoting the

This session is devoted to weak interaction following E——ﬂﬂi—al rei:;ﬁz wglg: Z;i
processes involving pions, muons, and nuclei. The been presente T 2. o P =
emphasis will be on the role of these processes in interactions.
clarifying the form of the weak interaction Hamil- R .
tonian. The theory of weak interactions has had The ratic of u+ey relative to the
exciting developments in the last few years. A dominant decay mode 1is
particular form of unified gauge theory of weak and R -g
electromagnetic interactions, which we will refer ey < 3.6 x 10

to as the standard model,l) has had two striking
successes!: (1) neutral weak currents have been
discovered in high-energy neutrino interactions
with protons and neutrons and these currents appear

reported by J.M. Poutissou from the TRIUMF
group (abstract P4) and
9

to have a strength and form consistent with the Rue*{ < 1.6 x 10 (30% CFL)
predictions of the model. (2) Charmed particles,

needed in the model to explain the absence of reported by H.P. Povel from the SIN grouf
strangeness-changing neutral currents, have been (abstract P18).

discovered with the expected decay modes. Never-

theless, there are indications that this model may B. Hahn from the Bern group working

not be the total story. SIN reported the following preliminary

1imits on pe conversion on 32s:

If there is a conclusion to this talk, it is R,-g- < 4 x 10710
that the fundamental laws of weak interactions must A -a
be explored in many different ways: beta-decay, and R _-_. < 1 x 10 .

weak processes of pions and muons, atomic physics, BE
colliding e*e~ beams, and high-energy neutrino

beams at the largest accelerators all have a role

to play.
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Muon CLFV Searches
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E104: uN—>eN conversion ( 1978-1984) at TRIUMF

Many new technologies

 First TPC use in an
experiment.

 RF separator

« High density read out

o Data acquisition

e VOGT counter

Led to:

e Hermes TRD’s chambers
e RMC drift chamber

o E787 drift chamber

o Babar drift chamber

e T2KTPC's
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Pion and Muon decay experiments

pienu (1), pienu(2), pienugamma,
K.Crowe, M.Strovink, Twist, Pienu
(3

Partnership with US groups
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Good beane quality = small momentum bite

Low background
= Trigoer from beam e*

- Pileup from beam ¢* hitting beam or detector compongnis

- [Energy measured in Nal crystal

e T—ev]
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APS Northwest Section mesting




Experiment Analysis Conclusion
e e ok e e ok +

o Met f2em? B me s G _ 9
Fﬁ—>f+w =G ] (1 m?ﬁ ) [] + RC] ’ \/5 8 My +
Nisi ; ! Decay mode (9./9e)?
R:' L 2 1 2 ] y glu. e
g el q:“g'” o {n:”’: —y e 1.0018 & 0.0014

e/ B SERERSIREeNE S, €T u/mr—e* 1.0021 4 0.00
K- u/K —e 0.9960 £ 0.005
K — wu/K — me 1.002 + 0.002
W = u/W —e 0.997 &+ 0.010

0.1% measurement = A~ 1000 TeV

Massive v’s
R.E Schrock Phys.Rev.D 24, 5 (1961)

Scalar coupling
B.A. Campbell & David W. Maybury Nucl. Phys. B, 709 419-439 (2005)

R-Parity violation SUSY
M. J. Ramsey-Musolf, S. Su & S.Tulin, Phys. Rev. D 76, 095017 (2007)

* T and T are complementary

Pion branching ratio is one of the most
precise test of CC lepton universality

0.1% measurement in the BR — 0.05% in ge/gu

=, Real deviation from the SM — new physics observation
=) Agreement with SM — constraints

| 072812011 PANIC 2011 a |



Internationalization of the TRIUMF

program

e To secure international contributions to KAON, Erich
pushed for expanding the TRIUMF program beyond
that on the cyclotron and supported an active external

program:
— Rare decays at TRIUMF moved to BNL (ex 787/949)
— Parity Violation in p-p moved to Q-weak at TINAF
— Pol 3He program led to Hermes at HERA
e Physics studies during KAON led to
— Neutrino BNL proposal( failed to be funded) and T2K
— Kaon resonances studies at BNL and KEK
— Antiproton studies at KAON led to ALPHA
— Rare decays at BNL, KEK, J-PARC?
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HERA model

e Erich introduces the so called “HERA Model”
which was used to bring Canada into Hera and to
support the Canadian participation in ZEUS and
HERMES experiments in the early 80’s.

e |t calls for contributions to both the accelerator
and the detector/data analysis systems.

 This was the model Erich wanted for KAON.

e This model is the basis for the Canadian
Participation in ATLAS/LHC, T2K/J-PARC.

 To some degree, It is the basis of the FAIR
business model.

Feb 7th 2015 E.Vogt Science Symposium 14



Connecting with world’s physics
drivers

1988 Kaon symposium: Er|ch shares a log with V.Soergel, (DESY) L.
Maiani(Cern) and boat captain in Centre Bay on Gambier island.
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Towards the HIGGS years

e TRIUMF-LHC contribution:

— Cern-TRIUMF collaboration during KAON PDS led to
TRIUMF-CERN contribution to the LHC

 ATLAS-CANADA
— End Cap calorimeter

e TRIUMF Tier-1 computing centre

 The key decision that led to this was the creation
of the Pearce chair at U-VIC and the hiring of
A.Astbury.
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TRIUMF-CERN

ATLAS-Canada project TRIUMF-LHC contributions (E.
( C.Oram) Blackmore)

Members of the ALSTOM Canada assembly team beside
the last series magnet prior to shipping.
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ELEMENTARY
PARTICLES

I II III

Three Generations of Matter




ATLAS discovery of HIGGS boson
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Timeline for a Nobel prize in PP

e 1964 Theory of Higgs boson

e 1984 Higgs search Experiment design started
e 1984 LHC conceptual design

e 1993 SSC cancelled

e 1994 Atlas detector technical proposal

e 1998- 2008 LHC —ATLAS construction

e 1996 TRIUMF asked to build Parts for LHC
e 1998 ATLAS Canada funded

e 2008 LHC first beam

e 2012 Higgs found

e 2014 Nobel prize awarded
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FIG. 3 (color). Flux of *B solar neutrinos which are u or 7
flavor vs flux of electron neutrinos deduced from the three neu-
trino reactions in SNO. The diagonal bands show the total *B
flux as predicted by the S5M [13] {dashed lines) and that mea-
sured with the NC reaction in SNO (solid band). The inter-
cepts of these bands with the axes represent the * 1o errors.
The bands intersect at the fit values for ¢, and ¢, .. indicating
that the combined flux results are consistent with neutrino flavor
transformation assuming no distortion in the *B neutrino energy
spectrum.
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Neutrino Oscillations

Neutrino oscillation predicted by B. Pontecorvo 1957 if neutrino have a
finite mass: This was bold prediction at the time

Neutrino oscillation confirmed 1998 in SuperKamiokande Japan.
— ( M.Koshiba/R.Davis) Nobel prize 2002.

Solar neutrino oscillation confirmed by the SNO experiment in Canada
2002) A.McDonald(Queen’s) Pontecorvo prize awarded to the team.

Neutrino oscillation confirmed for accelerator made neutrino and for
reactor made antineutrino.(K2K and KAMLAND experiments in Japan
2004)

First detection of neutrinos from the earth (Kamland, Japan 2005)

First evidence for Thetal3 from T2K (June 2011)



Now to the Future

e Study the scalar sector of the SM at the LHC

e Search for physics beyond the Standard Model

— Direct search for new particles
 LHC program
e Dark matter search
— Indirect search for deviation from SM

e CP violation/ CPT tests/ gravity checks
* Majorana or Dirac Neutrino

e Charged Lepton Flavor violation (CLFV processes)
 Neutrino mass scale
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Physics beyond SM (Theory)

 Theory motivated reasons for it:

— Flavor problem:
e Masses and Mixing are arbitrary parameters
e Number of independent families (37?)
e Lepton coupling universality
 Masses of fermions much spread out

— Unification of strong interactions

 Running of 3 coupling constants

— Gauge Hierarchy problem

Feb 7th 2015 E.Vogt Science Symposium 24



Beyond Standard Model experimental

evidences

* Dark non-baryonic matter ( neutrino cannot
be it)

 Neutrino have mass ( SNO-SK 2001)

e Universe is matter dominated (CP violation)

e Dark energy
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Supersymmetry, SUSY

€ Supersymmetric
particlﬁ

Feb 7th 2015 E.Vogt Science Symposium 26



I/

60

50

30

20

10

Figure 5: Evolution of the inverse of the three coupling constants in the Standard Model (left)
and in the supersymmetric extension of the SM (MSSM) (right). Only in the latter case unifica-
tion is obtained. The SUSY particles are assumed to contribute only above the effective SUSY

scale Mgprgy of about 1 TeV, which causes a change in the slope in the evolution of couplings.

Unification of the Coupling Constants

m the SM

and the minimal MSSM

=

The thickness of the lines represents the error in the coupling constants [15].
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T

Neutnno oscillatior

% Neutrino changes its flavor while propagating in vacuum/matter.
—= Neutrinos have masses = Evidence for physics beyond the Std. Model.

Flavor eigenstates v, v, Mass eigenstates
i
OO || O @

: Vv, |
Atmospheric
B aceclerator Reactor & accelerator Solar & reactor
—Ed
1 O O S e 0+ 5,2 e s i)
Bl —l O O 85, O 1 O — 85 +C; 0O fiss

8 s senl-—s52" 0 £ 0 0 1
DI e L €3 < 10" by CHOOZ | 6, =34.4°%1.3° ¢,
Am,2=2.4x10= e Amy,? = 8 x 1075 eV?

® Mass hierarchy (m; <m, <m; orm; <m,; <m,)?
% Size of the mixing angle &7
% Size of the CP phase &7 ... Ability to measure CP violation depends on sin&,;.

—2 Important to measure &, ;.

Feb 7th 2015 E.Vogt Science Symposium 29



T New CP violation?

50-kt water cherenkov

» Search forv, =2 v_ (v_appearance)

s - -
» Precise measurement of v, >V, {1 dlS&ppEﬁfEh:Eﬁ}

*1 Japan Proton Accelerator Research Complex *2 The Super-KAMIOKANDE detector
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J-PARC complex

E&.

= . G e SGEV ﬁhr*’
Sy SIS Neatrino Famlltyn e S SO Synchrotmnv-r >

o e

Main Ring

' ﬁﬂaterlals and Life Sclence gff

: Experlmental Famllty

Nuclear and Parlrc[e Expenmental F:au:q_lpfyr e
(Hadron Hall) = o «w—* >
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,1'_2,/|2\ T2K experiment

Super-Kamiokande
Proton Beamling o

B L T
PARCa@“"'%- ________ 12‘50 /

_______ ‘
I | I/ | '&f 7_I_/

[ I [ [ f .H[

{11 130 2ol 49

J-PARC complex at Tokai

Kamioka mine( W-Japan)
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Summer/Coop students at TRIUMF

(Erich’s favorite program)

DESITIN OF A NEUTTRING BEANM FOHR. A LONG BASELINE
MEUTEIMNOG OSCILLATION EXPERIM ENT

hy

JARED AMNBERSCOM

TRIUF
AN YWESBROGOK WAl
AN COUVER, BO

T'hysics Clnoap Work Term Heport
in partial falfilllu=ul
of the reguairements of Lhe Phrsice ooy Prosranm

Fnmaner 1993

Jared Anderson
Department of Phixsics and Aztronomy

Tniversty of Viciaoria
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;I'_Zk\ ND280 Off Axis detectors

UA1 Magnet Yoke

Fine-Grain
Detectors

|
|

Solenoid Coil

Barrel ECAL
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International competition

Sin“20:3 sensitivity (90% CL)

“m
el Excluded by CHOOZ
o~ L
~_ 0.1 —— NOVA
% T Double CHOOZ
Daya Bay
® T2K({6month/year)
= 120days/year
assuming 20days/month
h"“"-a..,%
0.01_ B886[KW*1075] Approved:
....I...I...I...I...I-.-I.._.j-.;l...J'-;. 3?5{:{[;1.11.!‘1[]?5]
2009 2010 2011 2012 2013 2014 2015 2016 2017 20? 2019
ear

Request beam time of more than 107 sec(=~120days) per year
reb7th 201> in order to keep leaditig Mitethititiohal competition



Test of CP violation

T2K v, appearance ; ;
in2
Ocp VS. SiN“20; 2

for different 6,, T

NOTE: PDG’12 36 region for
sin%0,;:0.34-0.64

reactor 16 region (PDG ‘12)
sin220,; = 0.098=+0.013

Ichikawa(@EPS201 3 af

26
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T | T T T
T2K preliminary
68% C.L. ]
sin“0,,=0.4
2 5in%0,,=0.5 .
< 5in’0,,=0.6 ]
---- Reactor 1o range

Normal Hierarchy
| Am?,,|=2.4x103 eV?2

T | T T
T2K preliminary

. 68% C.L.
sin*8,,=0.4
| Zsin%0,,=0.5
e 5'111392_‘:0,6
---- Reactor 1o range

Inverted Hierarchy
|Am?,,[=2.4x103 eV?

E.Vogt Science Symposium

04 0.6
Sin228| 3



n/Rn EDM at TRIUMF

\ Electro-
N magnetic

Range of d (e em) in various models

Standard Model

Theory EDM history

Experiment

cold n beam

limited
UCN den

10-27+

1950 60
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HV/EDM cell test stand:

=  HV feedthrough problems
solved

= commissioned at 96 KV

December 18, 2014

UCN/EDM update =

decommissioning of existing beamline M13
- installation of BL1U downstream end

preparation for Kicker installation upstream

Sciencs Div’shiw__—/—'_”ﬁ




2 Double beta decay

[llustrations (top) and Feynman diagrams (bottom) showing (left) two-neutrino
double beta decay and (rnght) zero-neutrino double beta decay. In the Feynman
diagrams, the blue arrows represent the nucdleus that is decaying, while the other
amows represent particles that are emitted. Lines without an amowhead that
connect two vertices represent “virtual™ particles that cannot be seen or detected.
M, nucleus before decay; N, nucleus after decay; e, electron; v, electron neutrino;

V., electron antineutrino.
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2[3decay

Degenerate

1000

Many experiments

100+ jnverted

TABLE IV A summary Ist of the 330v) proposals and experiments

Experiment (lsotope| Mo Tochnigue Prosent Status Reforenne

-
]
I

Effactive i Mass (maeV)

CANDLES | ®Ca |few tons CoFy scint. crystek Prototype Umehera ef al. {3

-
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(=
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.é I‘IIIIIII T T ||||||| L IIIIIII_
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FIG. 4 The effective Majorana mass (mgg} as a function of the mass of the lightest neutrino, CLUORE T | Tl g Ty bolometem Froposal ardite et al. {20
e 15 | o be AN E g N I R
Tjgghiest- In making the plot, we have used the best fit values for the parameters in Table I The DCHA No| Mg “Ni foils and tracking Developmint Istihara et ol |

% oy 15y, | ang 1; o T faet g iy L ITa]
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- 15 . . T s _ P
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Double Beta decay

* Nuclear structure ( Theory and experiments)
e EXO
e SNO+
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Charge Lepton Flavor Violation

e Rare muon decays
— PSI
— FERMILAB
— J-PARC

e Rare tau decays
— Super B

Feb 7th 2015 E.Vogt Science Symposium 42



Tree
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What is needed

e Huge flux of u-: 10''/sec

— This is 103 times what a 2MW proton beam can
produce in the best conventional muon channel at
PSI.

e Pulse beam to avoid prompt background

* Improve spectrometer energy resolution

 Improve muon momentum selection
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(4 ]

FIG. 1. Diagram of the apparatus: 1—meson-producing
target (tungsten); 2—superconducting solenoid; 3—sole-
noid shield; 4—steel magnet yoke; 5—collimator sole-
noids; 6—collimator; 7—shielding (heavy iron); 8—de-
tecting-system solenoid; 9—targets for stopping of
muons; 10—detector (proportional chambers); 11—to-
tal-absorption scintillation spectrometer; 12—magnet
yoke.
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» The muon transport system
consists of curved solenoids.

bore radius : 175 mm

magneticfield: 2T
bending angle : 180 degrees
radius of curvature : 3 m

» Dispersion is proportional to a
bending angle.

 muon collimator after 180
degree bending.

» Elimination of muon momentum
> 70 MeV/c

Nno hiadh-enerav muons
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Conclusion

e LHC has given us the last missing piece of the Standard
Model at the energy frontier, the Higgs boson.

e LHC has failed to reveal any anticipated new particle
( for ex. SUSY)....so far.

e BSM physics can manifest itself in various observables
to be studied at the intensity frontier.

e TRIUMEF is well positioned to participate in these many
quests for the new Holy Grail.

e For Canadian Particle Physics, Erich put us on the right
tracks
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Leadership is laying the tracks but many “drivers”
are needed to go beyond the Standard Model




Merci, Erich

.
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